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As part of the on-going program in "Decision Control Models in

Operations Research," Mr. Douglas Blazer has extended the study

of removing large demands in the determination of an inventory

replenishment policy. In this report, he describes an inventory

filtering rule which identifies a threshold value T such that

any order equal to or exceeding T is specially handled. He

compares the statistical performance of this filtering rule to

the performanKof classical statistical outlier rules and
"'r inventory filtering rules. The paper provides results

on 33 cases using 7 different customer order distributions. 
Other

related reports dealing with this research program are given on

the following pages.

Harvey M. Wagner
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ABSTRACT

In this report we evaluate the performance of an inventory filtering

rule on computer simulated individual customer orders. The filtering

rule identifies a threshold value for which all customer orders

exceeding that value are not filled from existing stock, but rather are

specially handled. We show how classical statistical outlier rules

and other inventory filtering rules do not perform well in a practical

inventory setting. We develop an inventory filtering rule, and test

its performance on seven different customer order distributions that

resemble distributions we have seen in practice. We show that for

practical inventory applications, our filtering rule statistically

outperforms other models currently in the literature.

°............. 
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1. INTRODUCTION

We showed in [2], [3] that cost savings can result from

excluding extreme value demands in a single-item periodic review

inventory system. We assumed that any week's demand exceeding the

value T is specially handled. We investigated values of T

that excluded the upper 5 to 15% of the cumulative probability of

demand. We found that the cost savings from reduced inventory

are often greater than the cost of special handling.

In a real situation, however, the probability distribution

of a week's demand is not known exactly. Furthermore, an inven-

tory manager cannot collect individual orders during a week in

order to determine if the week's total demand exceeds the thresh-

old value. Practical applications require a special handling rule

that is based on historical observations of individual customer

-'!i  orders. The rule must specify a value T such that any individ-

ual order exceeding T is specially handled. Filtering out these

"large pops" should result in a probability distribution of weekly

demand that resembles the truncated demand distributions of [2].

In this report, we test a particular filtering rule using

computer simulated individual customer orders. The order distribu-

tions that we postulate bear close resemblance to those that we

have seen in actual data. We examine, in Section 2, the weaknesses

of standard statistical outlier formulas for practical inventory

r. - L' '-- '" ' ' ' ""- "" . -" "- - ' - . . . . ." - "- '
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applications. In Section 3, we describe the basic filtering rule.

Then, in Section 4, we describe the experimental design used to test

the filtering rule. In Section 5 we display the results using the

filtering rule as well as two other rules currently in the literature.

We examine the operating characteristics for the filtering rule using

different parameter settings. In Technical Report 23, we use empirical

data to examine the cost effectiveness of the filtering rule under

different parameter settings.

2. STATISTICAL OUTLIER THEORY

Statistical cutlier theory has not had widespread use in an

inventory context. What causes difficulty is that an outlier in

-- one context may not be considered such in other contexts. Consider

the following definition [1]:

...an outlier in a set of data is an observation (or
subset of observations) which appears to be inconsistent
with the remainder of the set of data. The phrase
"appears to be inconsistent" is crucial. It is a matter
of subjective judgement on the part of the observer
whether or not he picks out some observation (or set of
observations) for scrutiny.

Sometimes outliers are defined to include "errors of observation or

misrecordings" and only when such values can be proven to be in error.

Clearly, large demands that occur in a practical inventory setting

are not "errors or misrecordings". Nonetheless, they could be considered

outliers, at least in the sense that they can be handled differently

to save inventory investment costs. Before we examine further the

weaknesses of standard statistical outlier models in an inventory

4 context, we group the models into four classes. Three examples are

provided to illustrate the weakness of these statistical models in

4" : ,.. _ - . ' ., . , . .- .. "
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an inventory setting.

2.1 STATISTICAL OUTLIER MODEL CLASSIFICATION

Classification is according to the form of the alternative

hypothesis [1].

1. The first classification is deterministic, and covers out-

liers caused by reading or recording errors. If any observation

is clearly in error, the basic hypothesis that all observations

come from a single distribution, say F, is rejected. Thus,

"rejection of the initial model in favor of the alternative is

deterministically correct" [1].

2. The second classification, inherent variability models,

examine the "possibility that outliers have appeared in the

data as a result of a greater degree of inherent variability"

in the distribution [l]. Hence the hypothesis that all observa-

tions are from some distribution, say F (H:F), is countered by

the hypothesis that the observations actually arise from a

different distribution we call G (H:G).

3. Mixture models test whether a few members of a sample arise

from a population different from that represented by the basic

model. Hence, there is a mixture of two population distributions

in the sample, with the few members possibly being revealed as

outliers. The appropriate hypothesis would be:

H:F versus H:(1-f)F + 0G

where 1-f is the proportion of demands arising from the

distribution F and f is the proportion of demands arising from the

distribution G [1].
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4. The final classification is slippage models. In these

models most observations are derived from a population distribu-

tion F with parameters W and a, while some small number of

observations arise independently from a modified version of F

. where either pj or a have changed in value. Hence, the null

hypothesis is that all observations arise from distribution

F(H:F(p,o)), and the alternative hypothesis is that at least

one observation arises from a modified version of F, either

H:F(v,bo) or H:F(p+a,a).

In an inventory context, all four types of models appear to be

plausible with the mixture and slippage models seeming to be the most

likely. There are problems, however, arising from the use of any of

these statistical models.

2.2 WEAKNESSES OF STATISTICAL MODELS

Many of the models in all four classifications imply that an

outlier is an error, and therefore an unusual occurence. This view

supports the assumption that a set of data contains at most one outlier

[7]. But a model that tests only the most extreme value in a data

set. is not practical in an inventory setting, because multiple extreme

values frequently exist. Models that test for multiple outliers use

either consecutive (sequential) or block procedures [1]; these also

have inherent weaknesses for use in an inventory management context.

Consecutive (or sequential) testing "implies that the sample size

is not fixed, but is determined in each realization in relation to the

values of the earlier observations."[1] For example, the test statistic

(Xn-Xn.l)
by Likes [11), Kabe [10], is (Xl , where X1 is the value of the
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smallest observation and X is the value of the largest observation.

Assume sample values are 7, 7, 8, 9, 10, 951, 952. Consecutive

testing would indicate that Xn is not an outlier and the procedure is

terminated. The illustrative sample is not atypical in an inventory

setting where there may even be several ties at an extreme value.

This effect of several larger values is termed masking and is an

inherent weakness in many statistical consecutive testing techniques

[12].

Block procedures suffer from an alternative danger called

swamping (5]. Blocking procedures test a group of outliers at one

time, "en bloc". For example, the test statistic for multiple out-

liers by Fieller is

(Xnk+l) +...+ Xn
n

!Xi

where k upper outliers are tested as a group. Assume sample values are

7, 7, 8, 9, 10, 951. Block procedures for k=2 indicate that both 10 and

951 are outliers, thus 10 is "swamped" by the value 951 (1].

Another weakness is that most classical statistical models are

tailored to specific distributions. Barnett and Lewis list nearly 60

tests for outliers in univarlate samples which apply to individual

distributions (for example, Normal, Gamma, and Exponential). They

report that, "... the performance of some of the classical tests or

Sestimates is very unstable under small changes of the underlying distribu-

tion..." [9], [1]. In an inventory context, the individual order

distribution is usually not known. In fact, individual order distributions



F! 6

may be different for different items (Or classes of items). Thus,

tests for specific distributions are not rrctical for inventery uses.

The fact that the underlying individual order distributions are

unknown virtually excludes the use of the inherent variability,

mixture, and slippage models.

2.3 EXAMPLES OF STATISTICAL MODELS

In Table I we provide three examples of customer order data to

illustrate the effectiveness of seven statistical outlier models.

Table 2 provides the statistical outlier models and a short description

of their properties. Tables 3, 4, and 5 provide the results of applying

the seven statistical models to the three order samples. The tables list

the appropriate test statistic, with a dashed line to indicate which

values are considered outliers. The single and double upper outlier

models are applied sequentially, so that the first observation is

excluded from consideration in the second application of the test.

The tables highlight the weaknesses of statistical outlier models.

Single upper outlier tests apply best when an outlier is assumed to be

an error of observation and therefore rare. They are not meant to be

applied sequentially, and they give unreliable results, as in example

A where three of the models (1, 3, and 4) consider all the observations

to be outliers. Masking effects are evident in examples B and C for

models 2 and 4. Model 7 is unreliable as the number of observations

increases, and is useful only for small k (note the critical value

formulation). Model 5 appears reliable; however, tables are available

only for k-4. It appears for example C that more observations would

be considered outliers had statistical tables been available; for k-
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there are no outliers, and for K=2 there are no outliers at the .01

significance level. Models 5 and 6 also have a disadvantage in the

amount of data that must be collected to apply the models. In an

inventory setting with 10,000 or more line items, the data storage

requirements could be impractical.

TABLE 1

Example Data

List A B C

Number in Sample 17 15 25

Median 30 500 150

Mean 632 1256 325

Standard Deviation 1313.3 1596 356

Observations 5000 5000 1200
2500 5000 1000
1358 2000 1000
1000 1000 1000
500 1000 500
175 1000 500
50 1000 450
50 500 400
30 500 315
15 500 226
15 500 226
10 480 200
10 300 200
10 so 150
10 15 150
6 150
2 108

100
100
50
50
36
10
10
5

. *. . ,°
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2.4 STATISTICAL OUTLIER MODELS IN INVENTORY THEORY

*. Early efforts in inventory theory to handle extreme value

* **. demands have many of the same shortcomings as statistical outlier

theory. The following quote from Brown [4] underlies the basic

assumptions:

Occasionally there are demands that are recorded to
be used in forecasting that should not be recorded.
For example, there are keypunch errors in recording
data, or demands that are really dependent demand,
or demands that are to fill a large scheduled backlog
type of order.

As in many statistical models, the implication is that an

outlier is an error and an unusual occurrence. Inventory literature

recommends the use of demand filters to identify large orders.

Thus, any order that exceeds 3.5 standard deviations from the

mean for tight control, or 4 standard deviations for normal control,

or 5 standard deviations for loose control [4] should be earmarked

to be checked for correctness. And if "...the demand is reasonable

(for example, correct), it should be processed to increase the

standard deviation" [4]. Although inventory scholars recognize

that excluding extreme value demands reduces the variability of

demand, and hence reduces the inventory investment in stock, inventory

literature does not quantify the cost impact of applying filtering

*- rules. In addition, there is no scientific evidence showing that a

specified number of standard deviations from the mean is the most

economical point for exclusion of extreme value demands.

.. * , .-
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3. A FILTERING RULE FOR LARGE INDIVIDUAL CUSTOMER ORDERS

For an empirical inventory systems study, Wagner [13] devised

an outlier rule using successive observations of order statistics.

We test a version of Wagner's rule for filtering out "large pop"

customer orders. In this repzrt. the r-l.' i:

Let Xl,X2 ,...,Xk be the k largest observed customer ordurs out

of N orders, where XI is the largest individual order and X K

the smallest. Given a value r>l, let Xo=rX, and define J as
the set of j, for lj k, such that X _IrX. Set Tr=min(rXj).

We found in [1], [11] a statistical outlier rule by Likes similar to

the rule above. Using the notation as above, Likes test statistic is

J j+I Likes' (11] outlier model is applied sequentially and there-
x.
3

fore suffers from the masking effect as does other classical outlier

models. Waaner's filtering rule is not sequentially applied, and

therefore is not subject to masking.

The parameters for the filtering rule are N, k, and r. To illustrate

this method, we present three examples. Suppose N=25, k=lO, and r-l.8.

Assume the 10 largest observed orders for each example are:

S. SAMPLE CUSTO . ORDERS

EXAMPLE I EXA"PLE 2 EXAMPLE 3

"i) 29 1000 SO0
29 1000 S0
2, a 0 300

A. 2? 100 100
s 21

, x, 20 27 20

Is 28 S 7
X, 17 23

TAKLE 6
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For example 1, X0=52.2 (=1.8*29). The set J consists of

all j, for lsij10, such that X, 1zl.8Xj9 which is J=1. Therefore,

T1.8=min(52.2)=52.2. Hence, any customer order that is at least

52.2 is filtered (specially handled); in the example, no previous

order is considered a big pop.

For example 2, Xo=1800 (=1.8*1000). The set J consists of

j=l, 4, and 5. Therefore, T1 .8=min (1800, 180, 50.4)=50.4. Hence,

any order of at least 50.4 is filtered; in the example, the orders

1000, 1000, 800, and 100 are considered big pops.

For example 3, X=900 (=1.8*500). The set J consists of

. j=l, 4, 5, and 7. Therefore T1 .8=min (900, 180, 45, 12.6)-12.6.

Example 3 illustrates the need for an amendment to the basic rule

to prevent excessive filtering. In this example, the orders 25, 20,

*and 13 are indicated to be large pops. Therefore, we modify the

rule by adding another parameter y.

Given a value y>O, let w=y(Xl-Xk) Define J as the set of j,' .'

for 1-j!.20N, such that Xj-lzrXj and for .20N<jsk, such that

Xj-l5rXj and X w-Xj+l>W. Set Tr=min(rXj).
jcJ

Applying this modified rule to example 3 with y=.2, set J

consists of j=l, 4, and 5. We exclude j=7 since X7-X8<w (6<98.4).

Therefore, T1 8=min (900, 180, 45)=45. Hence, any customer order

of at least 45 is filtered.

The modification of this rule places an additional restriction

to filtering out more than .20 of the sample order data. We use

.20 since it seems a practical bound for special handling, and we

4show in [2] that increasing the probability of demand special handled

beyond .15 tends to decrease the amount of cost savings.

4: .-' , " i - ., ., . .. , - I ., ., . . .-o / . .i .. ....... ....... - .." . , ,
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4. EXPERIMENTAL DESIGN

4.1 CUSTOMER ORDER DISTRIBUTION

We test the filtering rule on a simulated distribution of

individual orders that resembles actual customer order data. We

generate proportion P of the order distribution as small orders, and

the remaining proportion of 1-P as "large pops." The order

distribution, shown in Figure 1, is described as follows. Let o

be the probability of a customer order size z, where

~(l.5)z=1

(P(z+.5) - (z-.5) z=2,..., B-1

t(b) - 4)(B-.5) ZZB

1-P zCZ,

where

11(z=1Xe dz,
0

b -ln(l-p)_-X
Bint(b+.5), 1

13 T-o*10,

Z={zlz=B (10)100(100)1000),

I=dimension of Z.

For example, let P=.95 and.\=.l. Then b=29.957, B=30, B Z=40,

Z-40, 50,..., 100, 200,..., 1000, and 1-16. We consider four distrib-

utions. All have X-J and we let P be .95. .90, .85, and .80. The

cumulative probability distribution is shown in Figure 2.
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CUMULATIVE ORDER DISTRIBUTION

1-P

CUMUJLATIVE

PROBABILITY

123... b 8 3*4iO 100 200 1000
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Figure 1
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4.2 EXPERIMENTAL PROCESS

We generate N random customer orders (where N is the parameter

for the filtering rule) and apply the filtering rule to find a

value for T. We then generate another N random customer orders

and find the associated value for T. For N=50, we generate 101

sets of orders and calculate the corresponding T for each set.

For N=25, we generate 203 sets and values of T. This information

is then formulated as shown in Table 7, which provides the observed

distribution of the T values.

Relative Frequency Cumulative Relative' T Val ueTVuof T Value Frequency of Filtered Orders

1-19 .0 -

20 .010 .140

33-39 .080 .052

44-49 .366 .050

50-54 .356 .046

72 .070 .041

90 .070 .038
107-162 .050 .029

2200 .0

SIMULATION RESULTS FOR CASE I

P=.95 r=1.8 N=50 y-.2

TABLE 7

For the simulation appearing in Table 7, the first line shows

that there is never a value of T between 1 and 19, and therefore

customer orders of 19 or less are not filtered. The second line states

that for 1% of the 101 sets of N=50, the T value was 20; therefore, all

customer orders from I to 19 (86." of the orders) are considered ordinary
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orders, and all orders from 20 to 1000 (14%) are filtered. The

next line shows for 8% of the 101 sets, customer orders of 40 or

more are filtered. This is .052 of the 50*101 simulated orders,

which compares to the .05 for the hypothesized distiributlon (see

Figure 2). Note that the majority of the T values are in a

limited range,-with over 70% of the T values lying between 44 and

54. In fact, for all 24 of the cases found in Table 8, the

observed distribution of the T values is concentrated in a narrow

range (see the Appendix).

EXPERIMENTAL DESIGN

Parameter P r N k Case Number

.95 1.8 .2,.0l 50 15 1-2

1.8 .2,.01 25 10 3-4

1.6 .2 50 15 5

1.6 .2 25 10 6

1.99 .01 50 15 7

1.99 .01 25 10 8

.90 1.8 .2,.01 50 15 9-10

1.8 .2,.01 25 10 11-12

1.6 .2 50 15 13

1.6 .2 25 10 14

1.99 .01 50 15 15

1.99 .01 25 10 16

.85 1.8 .2 50 15 17

1.8 .2 25 10 18

.80 1.8 .2,.01 50 15 19-20

1.8 .2,.01 25 10 21-22

1.99 .01 50 15 23

1.99 .01 25 10 24

TABLE 8

T '4 i- , , . _,, : . :.r' , . " , .. . . " , . , .. . : ,. - '
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4.3 OTHER CUSTOMER ORDER DISTRIBUTIONS

In order to test the sensitivity of the results to the form

of the underlying customer order distribution, we also examine

three other order distributions. We call the first order distrib-

ution, "linear small and linear large orders"; it is illustrated

in Figure 3 and defined by

.95
30 zl,.%0

0z
.05 zCZ

where

Z= 1z z =40(10) 100(10)000).

We use this distribution to test the sensitivity to increases in the

frequency of the larger-valued small orders.

CU'IULA71VE ORDER DISIRIBUID O~iRo
LINEAR SMALL A*Q LINEAR LARGE

.99

.98

CUMJLATIVC

PROBABILITY '

.9

.4

.3

.2

.1%

3 6 9 2 151 4 2 340 06 70 O90 1 0z0 30 400 060 70000900 100

ORDER SIZE

riturt 3
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We call the second order distribution "exponential small and

exponential large'; it is defined by

4,(1.5) z=l

-~+5 o(z-.5) z=2,...,29

0(29.97) 4 )(29.5) z=30

4,[3 + + + 0 z=40,50,... ,100
010)

1$(30 + z.0J - 63  + z=200,300,... .900

1-(D(45) Z=1000,

where x

0

Thus, both small orders and large orders are distributed exponentially

as shown in Figure 4. We employ this distribution to test the

sensitivity to decreases in the frequency of larger-valued large pops.

CUMULATIVE ORDER DISTRIBUTION FOR
EXPONENTIAL SMALL AND EXPONENTIAL LARGE

1.00

.99

.90

.97

.96
CUPIULATIVE .96
PROSAIILITY

.8

.7

.6

.4

.3

3 6 9 12 15 18 21 2427 30 640 50 6070 SO90100 20030O0400 S0070060O0900 000

ORDER SIZE
Figure~ 4
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Wle call the third order distribution the "smaller average

order"; it follows (1) with P-30 and X-.2 with two modifications.

The first modification is to add a lar' ' rl-4n-r 07- of 150 Pnd

to reduce the range of the large order sizu irom 1000 to 500.

Thus, Z in (1) is changed to:

Z= {zlz=6+(10)100,150,200(100)500).

A graph of this distribution is shown in Figure 5.

CLUiLATIvE ORDER DISTRIBUTION FOR
SMALLER AVERAGE ORDER

W1IT ORDER0( SIZE OF IS

1.00

* CUMUJLATIVE
* PSOBAMI1Y .9

.4

.3

.2

.1

I12 3 4 S 6 7 8 9 10 11 1? 20 30 4050 6070 SO 90 100 150 20300 400 S00

ORDER SIZE

Figure S

We use this distribution for three cases as shown in Table 9.

The second modification is to add 15 to the large order sizes,

thus Z in (1) is changed to:

Z- (zlz-15,20(10)100,150,200(l00)500).
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We present the results of 2 cases with this distribution. A graph

of this distribution is shown in Figure 6. We use this distribution

to determine the effect of smaller order sizes and therefore larger

order statistic ratios. The modifications to the distribution ensure

that the ratio between any two successive order sizes is not greater

than 1.8.

CUMULATIVE ORDER DISTRIBUTION FOR
SMALLER AVERAGE ORDER

WITH ORDER SIZE OF 15

(P-.90)

1.00

CUMULATIVE 95

-' PROBABILITY

.8

.7

.6

.5

.4

.3

.2

.1

1 2 3 4 5 6 7 8 9 10 11 12 20 30 40 50 60 70 80 90 100'150 200300 400500

ORDER SIZE

Figure 6

We use the experimental design shown in Table 9 for these

other distributions.

.o

1I
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EXPERIMENTAL DESIGN FOR

OTHER DISTRIBUTIONS

Case
Distribution P r y N k Number

Linear Small and .95 1.8 .01 50 15 25

Linear Large Orders 1.8 .01 25 10 26

Exponential Small
and Exponential .5 1.8 .01 50 15 27

Large Orders 1.8 .01 25 10 28

Smaller Average

Demand (xz.2) .90 1.8 .2,.0l 50 15 29-30

(Without order 1.8 .2 25 10 31

size 15)

(With order .90 1.8 .01 50 15 32

size 15) 1.8 .01 25 10 33

TABLE 9

5. RESULTS

5.1 RESULTS WITH FILTERING RULE

For each value of P in Table 8 and each distribution in Table 9,

we generate the same set of orders. Thus, there are seven distinct

order sets: one for each of the four values of P listed in Table 8,

and one for each of the three distributions listed in Table 9. We

use the first N orders in each sequence to "initialize" the experiment.

Use of the same order set allows us to compare the operating
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characteristics for each of the parameter settings for the filtering

rule.

Tables 10 through 13 summarize the results for the cases shown

in Table 8.

SUMMARY OF RESULTS FOR P=.95 DISTRIBUTION

NmbeCase Average Percent of Variance of Relative
Cser Percent of Frequency of

Orders Filtered Orders Filtered Filtering >l-P

1 1.8 .2 50 4.72 1.17 .010

2 1.8 .01 50 4.72 1.17 .010

3 1.8 .2 25 5.16 1.96 .055

4 1.8 .01 25 5.16 1.95 .055

5 1.6 .2 50 5.12 1.53 .020

6 1.6 .2 25 5.68 8.07 .193

7 1.99 .01 50 4.36 .33 .0

8 1.99 .01 25 4.72 .39 .010

TABLE 10

SUMMARY OF RESULTS FOR P=.90 DISTRIBUTION

Case Variance of Relative
Number y Average Percent of Percent of Frequency ofO s tOrders Filtered Filtering 1-P

9 1.8 .2 50 7.93 1.29 .0

10 1.8 .01 50 7.93 1.29 .0

11 1.8 .2 25 8.95 3.30 .025

12 1.8 .01 25 8.96 3.26 .025
1
13 1.6 .2 50 8.92 .88 .010

14 1.6 .2 25 9.56 6.41 .060

15 1.99 .01 50 7.84 2.20 .0

16 1.99 .01 25 8.57 2.67 .015

TABLE 11

. ...
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SUM.ARY OF RESULTS FOR P=.85 DISTRIBUTION

'.1

Cser rverage Percent of Variance of Relative
Case A ers Fered Percent of Frequency ofOrders Filtered Orders Filtered Filtering >l-P

17 1.8 .2 50 11.52 3.22 .0

18 1.8 .2 25 12.08 3.85 .0

TABLE 12

SUMMARY OF RESULTS FOR P=.80 DISTRIBUTION

mCase Average Percent of Variance of Relative

Orders Filtered Percent of Frequency of
I ~Orders Filtered Filtering >1-P

19 1.8 .2 50 15.08 20.47 .0

20 1.8 .01 50 15.25 16.48 .0

21 1.8 .2 25 15.73 23.50 .01

22 1.8 .01 25 15.88 21.73 .01

23 1.99 .01 50 14.91 15.75 .0

24 1.99 .01 25 15.55 19.79 .0

TABLE 13

The tables identify the parameter settings (r, N, and-y), provide the

average percent of orders filtered, and the variance of the percent of

orders filtered. The tables also show the relative frequency that the

rule filters out more than simulated (l-P) of the orders. This is

analogous to a Type I error in the Quality Control sampling literature

[6), [8).
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For example, the first case in Table 10 has only 1% of the

cases where more than 5.2% of the orders were designated to be

filtered (see Table 7). Note we use the simulated value for I-P,

which as shown in Table 7 is .052.

Observe that for N=50, and P=.90 and .95, the filtering rule

tends to be conservative; it filters slightly less than 1-P of the

orders on average, with little variance and with little or no chance

of a Type I error.

Increasing the fraction 1-P of large pops tends to increase

the difference between 1-P and the average percent of orders filtered,

and tends to increase the variance. The frequency of a Type I error,

however, remains negligible.

Generally, we can draw the following conclusions regarding the

parameters of the filtering rule:

1. As N or r increases, a smaller percentage of orders

are filtered, the variance decreases, and there is less

chance of a Type I error.

2. Type I error hardly varies as y increases.

Based on the difference between 1-P and the percentage of orders

filtered, the variance in the percentage of orders filtered, and the

frequency of a Type I error, we recommend the use of the modified

filtering rule with r=l.8 and f=.2. In a practical setting the filter-

Ing rule would be applied to a period's worth of customer orders, say

every 6 or 12 months. Therefore, N would vary from period to period.

We recommend the period length be selected to include at least 25

orders.
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We next examine the sensitivity of the filtering rule to

changes in the order distribution. Tables 14 through 16 present a

sunmary of the results for the cases sht*,n in Table 9.

SUMIMARY OF RESULTS FOR LINEAR SMALL
AND LINEAR LARGE ORDERS (P=.95)

Case Average Percent of Variance of Relative

Number r - N Orders filtered Percent of Frequency of
Orders Filtered Filtering >l-P

25 1.8 .01 so 4.41 .32 .0

26 1.8 .01 25 4.60 .15 .0

TABLE 14

SUMMARY OF RESULTS FOR EXPONENTIAL

SIALL AND EXPONENTIAL LARGE ORDERS (P=.95)

Case Average Percent of Variance of Relative

Number r y N Orders Filtered Percent of Frequency of
Orders Filtered Filtering >1-P

27 1.8 .01 50 4.01 .44 .0

, 28 1.8 .01 25 4.89 4.41 .055

TABLE 15

The filtering rule performs equally well on these order distrib-

utions. In fact, for the smaller average trder distributions, the

rule performs better in terms of a smaller difference in the average

fraction of customer orders filtered as compared to 1-P, and a smaller

variance (see Table A-29). Note that the results for case 30, which

uses the smaller average order distribution, are that 97". of the time

.. ,"



, , ,- -., ,. , ', '.' -.-. ' .-' .,..,. - .. .. . . . -. ' . . .. .. - , - - . . .' _

29

all large pops (orders of 20 or larger) aie filtered. Whenever the

smallest large pop value is at least r times as large as the largest

small order, the filtering rule consistently filters the large pops,

as we would expect.

SUMMARY OF RESULTS FOR SMALLER

AVERAGE ORDERS (X=.2. Pz.90)

Variance of RelativeCase Average Percent of Varce of relte

Numer y N Oder Flteed Percent of Frequency of
Nlumber r y N Orders Filtered Orders Filtered Filtering >1-P

29 1.8 .2 50 9.88 1.01 .0

30 1.8 .01 50 9.95 .11 .0

31 1.8 .2 25 10.07 3.30 .025

32 1.8 .01 50 9.01 .30 .0

TABLE 16

5.2 RESULTS WITH OTHER OUTLIER MODELS

We test two other outlier formulas to compare to our filter

rule. The first rule is from [4] which states any order exceeding

Y standard deviations from the mean should be identified for filter-

ing. Using the distributions as used in cases 9, 10, 13, and 15

(P=.90), we generate the same 101 sets of 50 orders. We test the

rule:

T=sample mean + Y , sample standard deviation.

We display the results for Y=2, 3 in Table 17.
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SUMMIARY OF RESULTS FOR

BROWN'S FILTERING RULE

(P=.90, N=50)

Y Average Percent Variance of Percent Relative Frequency
Value of Orders Filtered of Orders Filtered Of Filtering >I-P

2 4.28 1.67 .0

, 3 3.54 3.29 .0

TABLE 17

Neither of the two cases perform as well as our filtering rule in

terms of the difference in the average proportion of demand filtered

as compared to l-P, and in terms of consistency.

We next test outlier model 5 from Tables 3 through 5, which is

the model that perfomred the most reliably for the three hypothetical

examples shown in Table 1. The procedure is:

Let X1,...,Xk be the k largest observed customer orders, where

X is the largest and Xk the smallest. Determine the largest

value of t, for t=1,2,3,4, such that

t
E Xttr £ X-tX

J=l -

, z Ft:Ct,

where i=sample mean, s=sample standard deviation, and Ct=critical

test statistic value found In [1]. If Ft<Ct for all t, then

T-X +1. Otherwise select the largest value of t where Ft Ct

and set T*Xt-1.

We employ the distribution that we used for cases 3,4,6, and 8

(Px.95), which generates the same 203 sets of 25 orders. Note we

i"
°

.....
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use P=.95 and N=25, because critical test statistical values are

only available for t=4. The results are shown in Table 18. This

rule does not perform as well as our rule, with the probability of

a Type I error being .761. This rule is subject to swamping and is

not a reliable performer for practical inventory applications.

SUMMARY OF RESULTS FOR
OUTLIER MODEL 5

(P=.95, N=25)

Average Percent Variance of Percent Relative Frequency
of Orders Filtered of Orders Filtered of Filtering >l-P

12.03 67.98 .761

TABLE 18
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-1-....0

20 .010 .140

33-40 .060 .052

41.49 .366 .050

50-54 .356 .046

72 .070 .041

90 .070 .036

107-162 .050 .029

:200 .0

S1"..iLATION RESULTS FOR CASE 2

P a.95 r v.. h a 50 .01

TASLE A - I

Relitive Frequency CuVulatve Relative
I_¥luej of I Value frequency of filtered Orders

1-19 .0

20 .01 .140

22 .010 .113

.00 Ms*079

27 .010 .071

29 .016 .061

31-38 .236 .03

41-49 .414 O050

222 .20

72 * .034 .041

90 .026 .038

106-126 .OS .030

"200 .0

SIMULAIRON RM$ULS FOR CASE 3

P.5 v1.6 N 25 *.2

ABLI A I



Relative Frequency Cumulative Relative
T Value of T Vlue Frequenct of Filtered Orders

,1-19 .0

20 .015 .140

22 .010 .118

26 .005 .079

27 .010 .071

29 .015 .061

31-38 .236 .053

41-49 .419 .050

S1-S4 .217 .046

72 .034 .041

90 .025 .038

108-126 .015 .030

2OO .0

SIMULATION RESULTS FOR CASE 4

P .95 r- 1.8 ,25 Y v .01

TABLE A - 3

Relative Frequency Cumulative Relative
of T Value Frequency of Filtered Orders

1-17 .0

18 .010 .169

29 .010 .061

31-40 .218 .052

42-48 .673 .050

64 .069 .044

96 .010 .034

144 .010 .029

:200 .0

SIMULATION RESULTS FOR CASE 5

P .95 r 1.6 N so 1 .2

TABLE A - 4



201 .025.4

I1 .005 .235

16.015 .209

26 .020 .10

21 .034 .131

29 .010 .08

31-4 .074 .099

26-4 .020 .079

24 .034 .044

20 .005 .061

96 .00s .034

100 .0

S1"MJLA.10% R[SULIS rOK CASE 6

.95 yml.6 N a 25 ~s.2

YABL! A *S

Relative rrequency Cu Ulstive Relative
I Volve of 7 Value rie ueng of rfiltred Order

1-30 .0

36-36 .030 .0$2

42-10 .170 .050

S 2460 .544 .045

80.089 .041

100 .109 .034

120-130 .019 .029

'200 .0

51'ILATI0% IESULIS Fr* CASE I

p .9 1.09 %.*5 .01

TAIL! A - G
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Relative Frequency Cumulative Relative
7 Value of I Value Frequency of Filtered Orders

1-23 .0

24 .005 .098

28 .005 .065

30 .005 .055

32-40 .138 .O53

42-50 .325 .050

52-60 .409 .046

80 .050 .041

100 .044 .034

120-100 .020 .030

:200 .0

SIMULATION RESULTS FOR CASE 8

P - .95 r • 1.99 N - 25 .01

TABLE A - 7

Relative Frequency Cumulative Relative
T Value of T Value Frequency of Filtered Orders

1-30 .0

31-40 .525 .092

42 .1SO .086

54 .139 .082

72 .069 .067

90 .020 .060

108-100 .019 .048

-200 .0

SIMULATION RESULTS FOR CASE 9

P .90 r ).8 N50 ,.2

TABLE A - I

1,

I1



Relative Frequ~ency CUP4010tiVe Relative
T Value Of I value rrequen€. of r itrt: Order$

1-30 .0

31-40 .525 .092

42 .10 .096

64 .139 .032

72 .069 .067

90 .020 .060

10i-10 .019 .046

:200 .0

SIMATIOtN RESULTS rOR CASE 10

P, .93 r *.8 N SO .01

tASLE A - 9

Relative Frequency Cu'ulatve Relative
Volue cf T Value rrevency of riltered Orders

1-12 .0

13 .005 .284

20 .015 .1"

22 .005 .112

27-29 .OSO .097

31-40 .85 .091

42 .100 .066

54 .064 .061

72 .030 .064

90.016 .060

)107.180 .034 .o4
"a 00 .0-

S1tULATIOi RESULTS FOR CAMd 11

P .go v.1.0 N ,125 v .2

TALE A - 10

• l m. . . o . - .. . .



Relative Frequency Cumulative Relative
____ of T Value Frequency of Filtered Orders

1-12 .0

13 .005 .284

20 .015 .)39

22 .005 .112

27-29 .050 .097

31-40 .685 .091

42 .100 .086

54 .064 .081

72 .034 .064

90 .015 .060

107-180 .030 .040
j200 .0

SIMULATION~ RESULTS FOR CASE 12

P .90 r -l.8 N 25 .. 01

TABLE A -11

TVle Relative Frequency Cumulative Relative
of7 Value Frequency of Filtered Orders

1-20 .0

21 .010 .124

28-29 .069 .097

31-37 .663 .092

48 .168 .086

64 .059 .074

144-160 .030 .046

MO-0 .0

SIMULATION~ RESULTS FOR CASE 13

P.90 r 1.6 N 50 '.2

TABLE A -12



Relative Frequency Cumulative Relative
I Vlve of 7 Value Frequency of Filtered Orders

1.11 .0

12 .00 .313

16 .01S .210

is .015 .171

20 .01S .139

21 .010 .123

24-39 .207 .097

31-37 .626 .091

48 .064 .06

64 .020 .073

128-160 .025 .048

::00 .0

SIMULATION RESULIS FOR CASE 14

P .90 r, 1.6 fta2S N * .2

TABLE A - 13

Relative Freaency Cuv-letive Relative
- Valve of I Volve ryeoenc o€ filtered Ore

1.30 .0

34.40 .118 .092

42-46 .446 .056

60 .19 w

so .089 .067

100 .010 .055
120.19 .158 .08

200 .0

SI"LPIO". fl.ULIS FOR CASE IS

P".90 " 1.99 ftSO 1 .01

IAL A - 14

.1

I....~-



Relative Frequency Cumulative Relative
T Value of I Value Frequency of Filtered Orders

1-13 .0

14 .005 .258

22 .010 .)12

30 .015 .097

32.40 .399 .091

42-46 .379 .086

* 60 .074 .081

80 .060 .067

100 .020 .054

120-180 .039 .048

200 .0

SIMULATION RESULTS FOR CASE 16

' P .90 r • 1 .99 N • 25 •.01

TABLE A - 15

Relative Frequency Cumulative Relative
I Value Value Frequency of Filtered Orders

1-26 .0

27-29 .050 .136

31-36 .564 .126

54 .178 .112

72 .030 .099

90 .040 .092

125-180 .139 .077

.200 .0

SIMULATION RESULTS FOR CASE 17

;P .85 r-1.8 NSO ) .2

TABLE A - 16
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Relative rrequenly Cu.lbtlve Relative

I Value f Vfrecy of filtered Orders

1-19 .0

20 .OOS _44

22-29 .230 .135

31-36 .560 .127

54 .090 .113

72 .020 .099

90 .010 .092

108-190 .060 .077

540 .OOS .043

:1000 .010 .0

SI!JLATIONi RESULTS FOR CASE 19

* '.55 V 1.S N'2 .

TABLE A -17

Relative Freuenc€ Cu-wlative Relative

Sh oue of T Value rrtQucncy of filtered Orders

1-23 .0

24-29 .376 .190

36 .181 .130

54 .050 .1S

90 .030 .119

107-180 .337 .102

1000 .020 .0

SI UJLAIION RESULTS FOR CASE It

P .80 • 1.8 N a 50 a .2

TABLE A - IN

...................................... ..............--- ~------....-,---.---- - -
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Relative Frequency Cumulative Relative
7 of T Value Frequency of Filtered Orders

1-23 .0

24-29 .376 .190

36 .188 .180

54 .040 .162

72 .010 .129

90 .059 .119

108-180 .317 .102

540 .010 .054

z600 .0

SIMULATION RESULTS FOR CASE 20

P .80 r-1.8 N,50 " .01

TABLE A 19

:':"Relative Frequency Cumulative Relative

" Value of T Value Frequency of Filtered Orders

1-12 .0

13 .005 .280

15 :l .005 .231

17-20 .034 .200

22-29 .488 .190

36 .118 .13O

54 .034 .152

72 .015 .129

90 .044 .119

107-130 .202 .101

W360 .015 .080

540 .010 .o4

720 .005 .032

1000 .025 .0

SPILATION RESULTS FOR CASE 21

P ..aO r -1.8 I 825 Y 0.2

TALE A - 20

•. . . .. . •.. , -.... . .. . • - . . • 2



-"Relative Frequency Cumulative Relative
I Volvo of T lue r Fre uenc. of riltered Orders

1-12 .0

13 .03S .5o

is .03s .231

17-20 .034 .200

22-29 .488 .190

36 .118 .150

54 .030 .152

72 .015 .129

93 .054 .119

108-180 .202 .101

360 .015 .080

540 .010 .054

720 .010 .032

900 .005

L11000 .010 .0

S|P..LATION RESULTS FOR CASE 22

I ~ ~~P *.0 •"I 25 .1 .01

IABLE A -21

Relative Frequency Cumulative Relative
7 Value'F,.e of T Value rreuency of f 1ltered Orders

1-2S .0

26-30 .208 .190

31-40 .327 .180

60 .059 .152

so .010 .129

100 .050 .111

120-199 .337 .102

597 .010 .054

Z600 .0

Si'WULA10% RESULTS FOR CASE 23

P .80 r.1.99 hi O0 .01

IArFLE A- 22

i ' _"*" +- . '" + .
•

-+: . -, ,,.,' ." , -. .' " .•..,• " - .-



Relative Frequency Cumulative Relative
T Value of T Value Frequency of Filtered Orders

1-17 .0

18-20 .010 .200

21-30 .360 .190

31-40 .261 .180

60 .049 .152

80 .015 .129
100 .054 .111

120-199 .207 .102

398 .015 .080

597 .005 .054

796 .010 .032

995 .005 .010

.1000 .010 .0

p .80 r 1.99 N -SO "r .01

TABLE A 23

Relative Frequency Cumulative Relative
T Value Of T Volvo Frequency of Filtered Orders

1-41 .0

42 .010 .050

51-4 .723 .047

72 .119 .041

go .030 .036

108-180 .119 .030

"200 .0

SIMULATION RESULTS FOR CASE 25

LINEAR SMALL AND LINEAR LARGE ORDERS
P •.95 r 1.8 N aO .01

TABLE A - 24

............

.. . . . . ... .



Relative FrequenCy CumtulativI Reltiv

I value of 7 V a1 ! F eju ncv off Iltered Orders

1-37 .0

33 .005 .063

42-49 .089 .050

51-54 .778 .047

72 .069 .041

90 .020 .038
126-18 .039 .030

::200 .0

St 1JLA1t0 RESULTS FOR CASE 26

LIEAR SIALL A .1!.EA4 LARGE ORDERS
P .95 r 1.3 N &2S .01

IAt I, A. 25

Relative rreQcuecy Cumulative Relative1 Value of 7 Value rretaevIM of filtered Orders

1-37 .0

38-40 .00 .051

42-49 .3S6 .045

51-54 .307 .041

72 .129 .035

90 .040 .032

108-130 .119 .026

~~ ? 0 0 .0 I
SIPULAT|ON RESULTS FOR CASE 27

EXPONNriTJAL S"ALL AND EXPONEINTAL LARGE ORDERS
Pe.5 rv1.0 WSO N *.0s

IAGLE A 26



Relative frequency Cumulative Relative
F Vlue of T Value Frequency of Filtered Orders

1-16 .0

17 .010 .194

I8 .005 .174

20 .010 .143

26 .020 .079

27 .010 .070

29 .010 .057

31-38 .232 .051

40-49 .409 .045

S1-54 .197 .042

72 .069 .035

90 .020 .032

108-144 .010 .026

z200 .0

S11MULATION RESULTS FOR CASE 28

EXPONENTIAL SMALL AND EXPONENTIAL LARGE ORDERS
FP.95 r 1.1S N w25 *1 .01

TABLE A 27

Relative Frequency Cumulative Relative
T value of 7 Value Frequency of Filtered Orders

1-14 .0

15-20 .970 .100

22 .010 .093

36 .010 .086

Z500 .010 .0

SIMULATION4 RESULTS FOR CASE 29

SMALLER AVERAGE ORDERS
P *.go r 1.8 N so .2

TABLE A - 23



Relative rrequency Cumulative Rtelative

I Value or 7 Volvo Frepuene of Filtered Order
J 114 .0

11-20 .970 .100

22 .010 .093

36 .010 .08

14 .010 .071

.100 .0

SIMOLAYION RESULTS FOR CASE 30
SMALLER AVERAGE ORDERS

P .90 r 1.8 N1 0 •.01

TABLE A - 29

l Relative frequency Cu-ulative Relative
1 Vale of 7 Valfu Frequency of Filtered Orders

1-7 .0

8 .005 .224

9 .020 .184

13-20 .941 .100

22 .005 .093

6 .0S .06

54 .O0S .071

126 .005 .037

162 .010 .030

,60 .00S .013

-400 .0

SIULA110% RESULTS FOR CASE 31

r-'"ALLER AVERAGE ORDERS-P90 r .8 N 2S i .2

MESLE A -30



-7.

Relative Frequency Cumulative Relative
T Value of 7 Value rrequenc-y of Filter"d Orrs

1-14 .0

15 .010 .100

17-20 .683 .094

22-27 .228 .086

36 .059 .079

54 .020 .06S

z60 .0

SPtIULATIO'. RESULTS FOR CASE 32

SMALLER AVERAGE 0PDERS (JITH ORDER SIZE OF 15)

P .90 r 1.8 N -25 ..01

TABLE A -31

7Vle Relative Frequency Cumulative Relative
I ale of T Value Fre uency of Filtered Orders

1-7 .01

a .00S .224

9 .020 .184

13-15 .094 .100

17-20 .719 .094

22-27 .113 .06

36 .025 .079

54 .005 .065

126 O0OS .030

162 .010 .024

360 .005 .007

ADDO .0__________ ___

- . SIIIULATIO~i PESULTS FOR CASE 33

SMIALLER AVERAGE ORDERS (WITH ORDER SIZE OF 15)
P'9.90 rS~ als 225 Y v.01

TABLE A - 32

- 4 
1
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Please note corrections to lines 11, 18 and 20 of Technical Report #22

page 15. These corrections appear on the following page.
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15

For example 1, Xo=52.2 (=1.8*29). The set J consists of

all j, for lj~lO, such that Xj 1 l.8Xj, which is j=l. Therefore,

Tl.8 =min(52.2)=52.2. Hence, any customer order that is at least

52.2 is filtered (specially handled); in the example, no previous

order is considered a big pop.

For example 2, Xo=1800 (=1.8*l000). The set J consists of

j=l, 4, and 5. Therefore, T1 .8=min (1800, 180, 50.4)=50.4. Hence,

any order of at least 50.4 is filtered; in the example, the orders

1000, 1000, 800, and 100 are considered big pops.

For example 3, Xo=900 (=1.8*500). The set J consists of

j=l, 4, 5, and 8. Therefore T1 .8=min (900, 180, 45, 12.6)=12.6.

Example 3 illustrates the need for an amendment to the basic rule

to prevent excessive filtering. In this example, the orders 25, 20,

and 13 are indicated to be large pops. Therefore, we modify the

rule by adding another parameter y.

Given a value -->O, let w=y(Xl-Xk). Define J as the set of j,

for ljs.20N, such that X j lrXj and for .20N<jtk, such that

Xj1 rX. and Xj.IXj >w. Set T =min(rX.

Applying this modified rule to example 3 with y=.2, set J

consists of j=l, 4, and 5. We exclude j=3 since X7-X8<w (6<98.4).

Therefore, Tl. 8=min (900, 180, 45)=45. Hence, any customer order

of at least 45 is filtered.

The modification of this rule places an additional restriction

to filtering out more than .20 of the sample order data. We use

.20 since it seems a practical bound for special handling, and we

show in [2] that increasing the probability of demand special handled

beyond .15 tends to decrease the amount of cost savings.



I I

DATI

-L M E


